
June 1998 The Delphi Magazine 51

Delphi Meets COM: Part 7
Getting familiar with DAX...
by Dave Jewell

In last month’s instalment of
Delphi Meets COM, we built a

simple, for fun only, component
whose only role in life was to
‘tweak’ certain visual aspects of
the Windows desktop. We con-
verted TDesktop from a native VCL
control into an ActiveX component
and, along the way, I showed you
some of the pitfalls that lie in wait
during the ActiveX conversion
process.

This month, as promised, we’re
going to look in more detail at DAX
(the Delphi ActiveX Framework)
and the code that’s generated by
Delphi when converting a control
into an ActiveX component. You
might say to yourself ‘Why do I
need to know this stuff? Why can’t I
just rely on Delphi to do the
conversion for me?’

Well, I’ve always believed that
having a knowledge of the ‘bare-
foot’ Windows API will make you a
better Delphi programmer,
because it enables you to solve
problems that can’t be solved with
Delphi alone. Having a knowledge
of inline assembler code will like-
wise enable you to do things that
(rarely!) Object Pascal will not let
you do. In the same way, C++ pro-
grammers who use the Microsoft
ATL (Active Template Library)
admit that understanding the code
generated by the ATL control
wizard is a big help when the time
comes to modify their ActiveX
control.

The bottom line, then, is that
although Delphi’s ActiveX control
wizard takes a lot of the ‘grunt
work’ out of the conversion
process, there’s no substitute for
understanding the code produced
by the wizard so that you can make
your own custom changes to the
code as the need arises. Anyone
who has despaired over the acres
of MFC code generated by the
Visual C++ wizards will know
exactly what I’m talking about!

The OCX Project File
Let’s begin by taking a look at the
.DPR (project file) created by the
control wizard. The project file for
TDesktop is shown in Listing 1. As
with any ordinary library project,
the identifier following the library
keyword defines the name of the
output file, AxDesktop.DLL in this
case. However, since this is an
ActiveX control project, an exten-
sion of .DLL would not be appropri-
ate. Accordingly, the control
wizard adds a special directive
{$E} to the project file, which tells
Delphi’s linker to create the file
with a .OCX extension. Other
custom extensions are possible,
but anything after the first three
characters is ignored.

While on the subject of compiler
directives, you’ll note that the proj-
ect includes not only a .RES file (as
one would normally expect) but
also a .TLB file. For a plain vanilla
OCX project created by the

library AxDesktop;
uses
ComServ,
AxDesktop_TLB in 'AxDesktop_TLB.pas',
XDesktopImpl in 'XDesktopImpl.pas' {XDesktop: CoClass},
About1 in 'About1.pas' {XDesktopAbout};

{$E ocx}
exports
DllGetClassObject,
DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;

{$R *.TLB}
{$R *.RES}
begin
end.

➤ Listing 1

ActiveX wizard, the .RES file will
contain a version resource (if you
asked for one), and a small bitmap
which represents the control in
development systems that ‘import’
it. You’ll remember from previous
months that the .TLB file contains
the actual type library information
that’s used by the Delphi’s visual
type library editor. Recall that the
XXXX_TLB.PAS unit is only a Pascal
translation of what’s contained in
the type library: the type library
editor will always modify the TLB
data in response to the changes
you make, and then regenerate the
XXXX_TLB.PAS file accordingly.
When you build your OCX control,
the .TLB file gets stitched into the
executable as a resource of type
TYPELIB with an ID of 1. Valid OCX
controls must always contain a
type library with this ID so that
COM can access the information
contained therein.

In the present case, four units
are referenced by the project’s
uses clause. We can forget about
the About1 unit: as mentioned last
time round, this is a plain vanilla
Delphi form and needn’t detain us
any longer. ComServ, which I’ve
referred to in the past, is crucially
important because it contains the
code and declarations for the Com-
Server variable (type TComServer)
which implements the COM server
itself. The ComServer object is auto-
matically created simply by includ-
ing the ComServ unit in your uses
list.

If you examine the source for the
ComServer variable, you’ll see that it
contains a number of useful prop-
erties and methods. For example,
the ObjectCount property indicates
the number of ‘farmed out’ objects
that are currently dependent on
the OCX file while StartMode tells us
why the server has been started.
This can take one of several values
but for an OCX control it’s most
likely to be set to smAutomation.

52 The Delphi Magazine Issue 34

Bear in mind that, as discussed
previously, an OCX control is really
a tiny automation server.

It’s also possible to start a COM
server with the intention of regis-
tering or un-registering it, and this
is also reflected in the possible
values of the StartMode property.
You’ll notice that the constructor
for TComServer examines the com-
mand line for certain well known
strings and sets the StartMode
property accordingly. The strings
REGSERVER and UNREGSERVER are used
to perform automatic server regis-
tration and un-registration. Thus,
to register a new COM server (typi-
cally done from an installer
program), you just execute the
server passing /REGSERVER on the
command line.

Hang on a minute, I hear you cry!
An OCX control is, at the end of the
day, just a Windows DLL, so how
can one execute it, let alone give it
a command line to chew on? The

answer is that the ComServ unit has
been cleverly written so that it can
be included by both in-process
servers (DLLs) and by out-of-
process servers (EXE files). The
command line mechanism is only
applicable to EXE files. For OCX
controls, the installer program
needs to call the DllRegisterServer
routine to register the control and
DllUnregisterServer to remove the
registration information from the
system registry. Looking back to
the project file, you’ll see that
these two routines (along with
DLLGetClassObject and DllCanUn-
loadNow) are exported from the
OCX library.

Note that, deeply wonderful
though Object Pascal is, it’s a
restriction of the language that DLL
routines can only be defined as
exports in the main library file.
Things would be neater if the
exports statement could live inside
the ComServ unit, but it can’t. So
there. In practice, there are argu-
ments for and against this. On the

positive side it does mean that all
exports from a library are grouped
together in one place, so you’re
unlikely to end up accidentally
exporting something you didn’t
want to export.

One OCX, Many Controls...
Before leaving the ComServ unit, let
me stress that just because you’ve
got a single OCX file doesn’t mean
that you’re limited to a single OCX
control. One OCX library can con-
tain multiple controls and, with
Delphi, there are good reasons for
bundling multiple controls into
one file, the primary one being that
common units are shared and
overall disk size is reduced. Just as
the ComServer object is exported
from ComServ, there’s also a
ComClassManager variable which is
created within, and exported by,
the ComObj unit. The ComClassMan-
ager is primarily concerned with
managing the list of class factories
contained within the overall COM
server. You will remember from

unit XdesktopImpl;
interface
uses
Windows, ActiveX, Classes, Controls, Graphics,
Menus, Forms, StdCtrls, ComServ, StdVCL, AXCtrls,
AxDesktop_TLB, Desktop;

type
TXDesktop = class(TActiveXControl, IXDesktop)
private
FDelphiControl: TDesktop;
FEvents: IXDesktopEvents;

protected
procedure InitializeControl; override;
procedure EventSinkChanged(const EventSink: IUnknown);
override;

procedure DefinePropertyPages(
DefinePropertyPage: TDefinePropertyPage); override;

function Get_Font: Font; safecall;
function Get_ItemCount: Integer; safecall;
function Get_TextBackgroundColor: TColor; safecall;
function Get_TextColor: TColor; safecall;
procedure AboutBox; safecall;
procedure Set_Font(const Value: Font); safecall;
procedure Set_ItemCount(Value: Integer); safecall;
procedure Set_TextBackgroundColor(Value: TColor);
safecall;

procedure Set_TextColor(Value: TColor); safecall;
function Get_Visible: WordBool; safecall;
procedure Set_Visible(Value: WordBool); safecall;

end;
implementation
uses
SysUtils, About1;

procedure TXDesktop.InitializeControl;
begin
FDelphiControl := Control as TDesktop;
FDelphiControl.Visible := False;

end;
procedure TXDesktop.EventSinkChanged(
const EventSink: IUnknown);

begin
FEvents := EventSink as IXDesktopEvents;

end;
procedure TXDesktop.DefinePropertyPages(
DefinePropertyPage: TDefinePropertyPage);

begin
{ Define property pages here. Property pages are
defined by calling DefinePropertyPage with the
class id of the page, eg:
DefinePropertyPage(Class_XDesktopPage); }

end;

function TXDesktop.Get_Font: Font;
begin
GetOleFont(FDelphiControl.Font, Result);

end;
function TXDesktop.Get_ItemCount: Integer;
begin
Result := FDelphiControl.ItemCount;

end;
function TXDesktop.Get_TextBackgroundColor: TColor;
begin
Result := FDelphiControl.TextBackgroundColor;

end;
function TXDesktop.Get_TextColor: TColor;
begin
Result := FDelphiControl.TextColor;

end;
procedure TXDesktop.AboutBox;
begin
ShowXDesktopAbout;

end;
procedure TXDesktop.Set_Font(const Value: Font);
begin
SetOleFont(FDelphiControl.Font, Value);

end;
procedure TXDesktop.Set_ItemCount(Value: Integer);
begin
FDelphiControl.ItemCount := Value;

end;
procedure TXDesktop.Set_TextBackgroundColor(Value: TColor);
begin
FDelphiControl.TextBackgroundColor := Value;

end;
procedure TXDesktop.Set_TextColor(Value: TColor);
begin
FDelphiControl.TextColor := Value;

end;
function TXDesktop.Get_Visible: WordBool;
begin
Result := FDelphiControl.Visible;

end;
procedure TXDesktop.Set_Visible(Value: WordBool);
begin
FDelphiControl.Visible := Value;

end;
initialization
TActiveXControlFactory.Create(ComServer, TXDesktop,
TDesktop, Class_XDesktop, 1, '', 0);

end.

➤ Listing 2

June 1998 The Delphi Magazine 53

previous discussions that COM
classes are generally created on
behalf of the client using a class
factory. Consequently, in an OCX
control that exports half a dozen
different controls, there will also
be half a dozen different class fac-
tories which oversee the instantia-
tion of the related objects. The job
of the ComClassManager is to oversee
this list of class factories.

Back in the project file, you’ll see
that the ActiveX control wizard
also uses the XDesktopImpl unit. It’s
this unit which provides the nuts
and bolts implementation of the
XDesktop interface that’s forward-
declared in the AxDesktop_TLB file.
The unusual syntax of the uses
statement tells the project man-
ager that it is this file that contains
the implementation code for the
specified CoClass. Source code to
this unit is given in Listing 2.

The unit starts off (or ends,
depending on your perspective) by
creating a new TActiveXControl-
Factory object in the unit initiali-
zation clause. It isn’t necessary to
maintain a reference for this object

because a list of class factories is
maintained internally as I’ve
already indicated. In order, the
various arguments to the construc-

tor identify the COM server object,
the class which is to be ‘manufa-
ctured’ by this factory, the corre-
sponding VCL class (TDesktop), a

➤ Figure 1: The secret life of the Delphi IDE code generator. To
customise the ActiveX control wizard you can modify these internal
text resources within the IDE, provided you tread very carefully.

54 The Delphi Magazine Issue 34

unique ClassID for the new class, a
bitmap ID for toolbar images, a
license string for control licensing
(empty in this case because I told
the ActiveX control wizard that I
didn’t want to use design-time
licensing) and finally a set of status
bits that are stored in the registry.
After this call, the new class factor
will be added to the list of factories
managed by ComClassManager.

The actual declaration of the
TXDesktop class begins with the
syntax that you should now be
familiar with: it specifies that
TXDesktop is derived from TActiveX
Control, and that it implements the
IXDesktop interface, defined in the
AxDesktop_TLB file.

As you can see from the code,
the main purpose of the TXDesktop
class is to act as a go-between,
mapping any property, method or
event calls down onto the underly-
ing VCL-level component. Effec-
tively, TXDesktop ‘wraps’ the
component, providing an object
which implements the functional-
ity of TActiveXControl and can
therefore be embedded in an
ActiveX container.

I won’t describe the Get_XXXX and
Set_XXXX routines because you can

see that they are just trivial wrap-
pers around the underlying VCL
component. The only exception
here is the Get_Font and Set_Font
routines. The TDesktop component
only understands VCL-style TFont
fonts, whereas the ActiveX compo-
nent can only deal with OLE fonts.
Thus some conversion is neces-
sary. The GetOLEFont and SetOLE-
Font routines are implemented
inside the AXCtrls unit and they
allow you to map a TFont onto an
OLE font object, and vice versa. In
OLE, fonts are themselves imple-
mented as automatable objects
that implement an IFontDisp inter-
face. Wheels within wheels!

The InitializeControl method
of the implementation class is par-
ticularly important because it’s
here that you will typically want to
execute any ActiveX-specific ini-
tialisation code after the underly-
ing VCL component has been
created. In other words, there
might be some ActiveX specific
initialisation you wish to place
there that wouldn’t be appropriate
if the control was running natively
under Delphi. As an example, the
Delphi documentation states that
you should bind the OLE event

firing methods to the VCL control’s
event properties within the
InitializeControl routine.

The Undocumented
MODULES Resource
Incidentally, you might be wonder-
ing how it is that the ActiveX
control wizard is able to generate
all this code. Where does it all
come from? The fact is that most of
the code generated by the wizard
is pre-packaged boiler-plate code
that’s hidden away inside a
number of undocumented res-
ources within the Delphi 3 IDE. If
you’re feeling adventurous (or
maybe you just don’t like the way
Inprise format their source code!),
you can tweak these resources to
customise the wizard’s generated
code to meet your exact needs.
However, it should go without
saying that care is needed and you
shouldn’t even think about it
unless you create a lot of OCX
controls using the wizard.

As an example of what the inter-
nal resources look like, take a look
at Figure 1. This shows part of the
MODULES resource (of type
RT_RCDATA). As you can see, it’s just
a specially formatted text file that’s
been hidden away inside the IDE.
Other internal resources you
might care to examine are OCXRE-
SOURCE and AXNEWSOURCE. All three of
these ‘files’ (I use the term loosely)
contain a series of code templates
which are used by the IDE in
various situations.

It should be obvious from exam-
ining Figure 1 that each template is
made up of boiler-plate code con-
taining embedded strings corre-
sponding to (for example) the
actual class name that’s being gen-
erated. As the IDE processes the
code template, the embedded
string is replaced with the actual

IPersistStreamInit
IPersistStorage
IOleObject
IOleControl
IOleInPlaceObject
IOleInPlaceActiveObject
IViewObject
IViewObject2
IPerPropertyBrowsing
ISpecifyPropertyPages
ISimpleFrameSite

➤ Listing 3

➤ Figure 2: Using Delphi, it's very easy to create great-looking
property pages which are just as sophisticated as those to be
found in Microsoft's own ActiveX controls. This is from one of
the components that ships with Visual Basic.

56 The Delphi Magazine Issue 34

class name. Thus, consider the
following:

procedure T%1:s.InitializeControl;

begin

FDelphiControl :=

Control as %2:s;

end;

Comparing this code snippet with
the generated code in Listing 2, we
see that %1:s corresponds to the
implementation class name for the
OCX control (without its leading T)
while %2:s corresponds to the class
name of the underlying VCL con-
trol. The meta-arguments (for want
of a better word) go all the way up
to %6:s in the case of the call to

TActiveXControlFactory.Create

Finally, if you’re planning to have a
go at tweaking these resources,
remember that each template is
separated from the next by a ‘|’
character. This is very important,
leave them out and the IDE will be
most disgruntled!

I mentioned earlier that the key
DAX class in OCX implementation
is TActiveXControl. It’s this
abstract class which implements
all the functionality that’s needed
to embed a VCL control into an
ActiveX container. The implemen-
tation code for TActiveXControl is
contained in the AxCtrlsunit which
is nearly 3900 lines long! This is
where the rubber hits the road!
Aside from other things, this class
provides support for events, prop-
erty pages and property browsing,
persistence, in place activation
and embedding in a container. In
order to provide all this functional-
ity, the TActiveXControl imple-
ments all the interfaces shown in
Listing 3.

In addition, as we’ve already
seen, the implementation class
must also implement the interface
that’s required by this specific con-
trol and it’s for this reason that, as
already mentioned, it makes sense
to think of it as a go-between, link-
ing the world of ActiveX controls to
VCL land. Despite the ‘under the
hood’ complexity of TActiveXCon-
trol, it has relatively few proper-
ties and methods. Its primary job is

to implement all the required
ActiveX control functionality
within one object.

Before leaving the subject of the
code generated thus far by the
ActiveX control wizard, let me just
draw your attention to one possi-
ble area of confusion in the AxDesk-
top_TLB unit. If you examine the
source code here, you’ll see that
there appears to be a second
TXDesktop class which is distinct
from the class of the same name
that’s defined in the XDesktopImpl
unit. What’s the reason for this
anomaly?

The TXDesktop class in the XDesk-
topImpl unit is, as previously
stated, used to expose an underly-
ing VCL component to the outside
world as an ActiveX compatible
control. The TXDesktop class in the
AxDesktop_TLBunit does exactly the
reverse job: it enables Delphi to
host an ActiveX control as if it were
a native VCL component, placing
the component onto (by default)
the ActiveX page of the component
palette. Because the emphasis
here is on creating ActiveX compo-
nents rather than hosting them, we
won’t delve into this any further,
but it’s important to be aware that
there are effectively two classes
with the same name and exactly
opposite roles. If you don’t bear
this in mind, then things will get
very confusing!

Adding Property
Pages To Your OCX
Up until now, I haven’t covered the
subject of property pages. The
DAX framework makes it really
very easy to add custom property
pages to your control. Within the
XDesktopImpl unit (Listing 2), you’ll
see that the ActiveX control wizard
overrides the DefinePropertyPages
method whether or not you plan to
add property pages to your con-
trol. It places a comment into the
empty method, providing a hint on
how to define your own property
page. It’s not terribly clear from the
code, but the single argument is
actually a procedural pointer to a
routine that takes a single argu-
ment, a GUID. Assuming that
you’ve already created a property
page for your control, you can just
call this passed procedure, giving
it the GUID which corresponds to
the property page you want to use.

So let’s go ahead and add a prop-
erty page to our desktop tweaking
component. First we select New
from the File menu, choose the
ActiveX page in Delphi’s object
repository and then click the Prop-
erty Page icon. Delphi will create a
new, empty property page
together with a corresponding
form unit and add it to the ActiveX
project. The great thing about
implementing property pages with
Delphi is that the design process is

➤ Figure 3: And here's one I prepared earlier, complete with spinning
globe, courtesy of an animated GIF file and a freeware GIF viewer.
Next month, I'll show you how, amongst other things, to tie the
controls on a property page to your ActiveX properties.

June 1998 The Delphi Magazine 57

identical to that of creating a
normal Delphi form. Just add the
required components to the form,
glue them all together with some
event handling code and off you go.

If you examine the newly created
property page unit, you’ll see that
Delphi has created a new GUID for
the exclusive use of the property
page. It’s this GUID which you need
to specify when calling DefineProp-
ertyPage from the DefineProper-
tyPages method of the
implementation class. Doing this
will ‘connect’ your property page
to the associated ActiveX control.
You will also need to add the
property page unit to the uses
clause of the implementation class
unit.

Once this is done, you can just go
ahead and design your properties
page. Bear in mind that the OK,
Cancel and Apply buttons will not
appear on the design-time form.
These buttons only appear on the
runtime property dialog as viewed
from the ‘containing’ development
system, see Figure 2 for an example
of what I mean. Also bear in mind

that a control can (and typically
will) be associated with more than
one page, each page will appear
with its own ‘tab’ on the overall
properties dialog. To implement
multiple property pages, just
repeat the above process and call
DefinePropertyPage from the
DefinePropertyPages method for as
many property page GUIDs as
you’ve got.

Incidentally, being able to create
the property page for your ActiveX
control using Delphi is a real
opportunity to rub the noses of
your C++ friends in the dirt. Errrm,
sorry. I meant to say it’s a real
opportunity to demonstrate how
easy it is to create cool visual
effects with Delphi, which amounts
to pretty much the same thing. In
Figure 3, the picture of Earth is
actually spinning round, courtesy
of the freeware TGIFImage
component created by Theodor
Kleynhans. This component sup-
ports animated GIF files and makes
it very easy to add knock-em-dead
effects to About boxes and prop-
erty pages. If you don’t have this

component, then get it! You can
download it from Theodor’s
website at: http://members.gem.
co.za/~theodor/index.html [But do
beware the GIF licensing nightmare!
Ed].If you want to build the OCX
control on this month’s disk, then
you’ll need to download and install
this component first.

That said, the property page in
Figure 3 has a conspicuous lack of
editable properties. In next
month’s instalment, I’ll continue
our discussion of ActiveX property
pages by showing you how to asso-
ciate ActiveX properties with the
controls on a property page. See
you then.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

	The OCX Project File
	One OCX, Many Controls...
	The Undocumented MODULES Resource
	Adding Property Pages To Your OCX

